BMP180 is a nice tiny sensor which can give the values of
Atmospheric Pressure
Temperature
Altitude
In this video, we’ll see how we can interface Raspberry pi with BMP180 and how to write python code for the same.
In order to follow this video you’ll need
Raspberry Pi 2/3/4 with Raspbian OS Installed on it
BMP180 Sensor
Female to Female Wire connectors
For setting up the raspberry pi and start using it, you can follow this post.Â
How to interface I2C Sensor with Raspberry Pi
Python Program to interface raspberry pi with BMP180.
The video shows about 2 different programs one is the library package and other is testing code. Make sure while testing out, both the programs stay in the same folder.
Here are the 2 programs
Python Program for BMP180 Sensor Part 1
# make sure to install python-smbus using below command
# sudo apt-get install python-smbus
import smbus
import time
from ctypes import c_short
DEVICE = 0x77 # Default device I2C address
#bus = smbus.SMBus(0) # Rev 1 Pi uses 0
bus = smbus.SMBus(1) # Rev 2 Pi uses 1
def convertToString(data):
# Simple function to convert binary data into
# a string
return str((data[1] + (256 * data[0])) / 1.2)
def getShort(data, index):
# return two bytes from data as a signed 16-bit value
return c_short((data[index] << 8) + data[index + 1]).value
def getUshort(data, index):
# return two bytes from data as an unsigned 16-bit value
return (data[index] << 8) + data[index + 1]
def readBmp180Id(addr=DEVICE):
# Chip ID Register Address
REG_ID = 0xD0
(chip_id, chip_version) = bus.read_i2c_block_data(addr, REG_ID, 2)
return (chip_id, chip_version)
def readBmp180(addr=0x77):
# Register Addresses
REG_CALIB = 0xAA
REG_MEAS = 0xF4
REG_MSB = 0xF6
REG_LSB = 0xF7
# Control Register Address
CRV_TEMP = 0x2E
CRV_PRES = 0x34
# Oversample setting
OVERSAMPLE = 3 # 0 - 3
# Read calibration data
# Read calibration data from EEPROM
cal = bus.read_i2c_block_data(addr, REG_CALIB, 22)
# Convert byte data to word values
AC1 = getShort(cal, 0)
AC2 = getShort(cal, 2)
AC3 = getShort(cal, 4)
AC4 = getUshort(cal, 6)
AC5 = getUshort(cal, 8)
AC6 = getUshort(cal, 10)
B1 = getShort(cal, 12)
B2 = getShort(cal, 14)
MB = getShort(cal, 16)
MC = getShort(cal, 18)
MD = getShort(cal, 20)
# Read temperature
bus.write_byte_data(addr, REG_MEAS, CRV_TEMP)
time.sleep(0.005)
(msb, lsb) = bus.read_i2c_block_data(addr, REG_MSB, 2)
UT = (msb << 8) + lsb
# Read pressure
bus.write_byte_data(addr, REG_MEAS, CRV_PRES + (OVERSAMPLE << 6))
time.sleep(0.04)
(msb, lsb, xsb) = bus.read_i2c_block_data(addr, REG_MSB, 3)
UP = ((msb << 16) + (lsb << 8) + xsb) >> (8 - OVERSAMPLE)
# Refine temperature
X1 = ((UT - AC6) * AC5) >> 15
X2 = (MC << 11) / (X1 + MD)
B5 = X1 + X2
temperature = int(B5 + 8) >> 4
temperature = temperature / 10.0
# Refine pressure
B6 = B5 - 4000
B62 = int(B6 * B6) >> 12
X1 = (B2 * B62) >> 11
X2 = int(AC2 * B6) >> 11
X3 = X1 + X2
B3 = (((AC1 * 4 + X3) << OVERSAMPLE) + 2) >> 2
X1 = int(AC3 * B6) >> 13
X2 = (B1 * B62) >> 16
X3 = ((X1 + X2) + 2) >> 2
B4 = (AC4 * (X3 + 32768)) >> 15
B7 = (UP - B3) * (50000 >> OVERSAMPLE)
P = (B7 * 2) / B4
X1 = (int(P) >> 8) * (int(P) >> 8)
X1 = (X1 * 3038) >> 16
X2 = int(-7357 * P) >> 16
pressure = int(P + ((X1 + X2 + 3791) >> 4))
#pressure = float(pressure / 100.0)
altitude = 44330.0 * (1.0 - pow(pressure / 101325.0, (1.0/5.255)))
altitude = round(altitude,2)
return (temperature,pressure,altitude)
Python Program for BMP180 Sensor Part 2
import bmpsensor
import time
while True:
temp, pressure, altitude = bmpsensor.readBmp180()
print("Temperature is ",temp) # degC
print("Pressure is ",pressure) # Pressure in Pa
print("Altitude is ",altitude) # Altitude in meters
print("\n")
time.sleep(2)
If you face any issues with the code or working or explanation, feel free to comment about it!!